Představuje počet hodin jak přímé výuky (výuka s lektorem online, hybridně či prezenčně), tak nepřímé výuky (samostudium, video, exkurze atp.).
Počet hodin na domácí úkoly. Rozsah domácích úkolů se uvádí zvlášť a nepočítá se do ceny kurzu.
Pro podnikající osoby a firmy poskytujeme kurzy za plnou nedotovanou cenu.
Výuka probíhá v angličtině.
The course will be held in English.
Building on the foundational knowledge gained in our Introduction to Data Science and Data Science Foundations in Python courses, this course provides advanced knowledge of machine learning and AI concepts and techniques – delving deeper into the intricacies of supervised and unsupervised learning algorithms, model evaluation and selection, and the fundamentals of deep learning and neural networks.
You'll explore different types of data, including numerical data, text (LLMs) and images (computer vision), and gain practical insights into implementing machine learning models using libraries such as scikit-learn. You'll also learn about reinforcement learning, understanding its applications and principles. Throughout the course, ethical considerations and best practices in AI are emphasized, ensuring that you're equipped to navigate the ethical complexities of the field responsibly.
This course is part of the Data & AI Scientist career learning path.
Prerequisite: Data Science Foundations in Python
Note: The course is still in preparation so there may be minor changes to the final content.
You will receive a certificate, if you:
This course is part of the Data & AI Scientist career learning path.
Lektory k tomuto kurzu zatím tajíme :)